5.1. Java Applet

Java Applets are small Java programs compiled to JVM (Java Virtual Machine).

Once downloaded, applets are inserted into a JVM interpreter inside the browser

- Interpretation is more favourable than compilation
 - Checking addresses in instruction

- System calls are treated in accordance with a security policy.

If applet is not trusted then it's confined within a **Sandbox**

ActiveX control

 ActiveX is a Microsoft technology similar to Java that allows viewing of Windows files via an Internet Browser

- Interacts with the operating system and executed without a sandbox.
 - it can cause security problems within the system

for protection: need to decide whether you want to run ActiveX or not.

- The method that Microsoft chose for making this decision is based on the idea of code signing
 - Each ActiveX control is accompanied by a digital signature
 - Browser verifies the signature prior to execution.

JavaScript

- JavaScript does not have formal security model
- Each vendor handles security in a different way
 - <u>Sandbox</u> to run JavaScript code: code can only perform webrelated actions, not general-purpose programming tasks like creating files.
 - JavaScript scripts are constrained by the <u>same origin policy</u>: scripts from one web site do not have access to information such as usernames, passwords, or cookies sent to another site.

6. Web application Security

- 1. SQL injection
- 1. Common Gateway Interface

SQL injection

 SQL (Structured Query Language) is a language that Communicates with DBs, Example:

- Select * from Users where username ='admin' and password = 'somepasswd'
- Looks for user whose username = admin and password = somepasswd
- SQL injection is a technique to inject crafted SQL into user input fields that are a part of web forms, can be used to:
 - bypass custom login to a web site,
 - Log in to a web site, or
 - take over a site

SQL injection: Simple login bypassing

Consider the following web site's login form:

...

 It's a web page that requests 2 pieces of information from the user username and password and it submits the information in the fields to login.asp (written in asp)

SQL injection: Simple login bypassing

- The file login.asp:
 - Dim adoConnection
 - Set
 - adoConnection=server.CreateObject("ADODB.Connecti on")

```
...
```

```
Dim strLoginSQL
strLoginSQL="select * from users where username =
                                                   \ //
  & Request.Form ("username") & " 'and password ='
   & Request.Form("password") & "
Dim adoResult
Set adoResult=adoConnection.Execute(strLoginSQL)
If not adoResult.EOF Then
  'We are here all went ok
Else
  'Wrong login
End If
```

SQL injection: Simple login bypassing

If the user enters admin as a username and adminpasswd, the following sql command is constructed:

Select * from users where username ='admin' and
password = 'adminpasswd'

- The username and password are placed inside the SQL string, but without any checks:
 - What happens if an attacker enter 'a' or "1"="1" as a username and any password?
 - The resulting SQL string is:

Select * from users where username = 'a' or "1"="1" -- ' and password = 'anypassword'

- This code will return data because "1"="1"
- the attacker bypass the login.

SQL injection

• Worse!

- The attacker can use built-in procedures to read or write files, or to invoke programs in the database computer
- For example the xp_cmdshell stored procedure invokes shell commands on the server's computer like dir, copy, rename, etc.
- From the last example, a hacker can enter some username as a username and a'exec master..xp_cmdshell 'del c:\winnt\system32*.dll' as a password.
 - This will cause the database to delete all DLLs in the specified directory.

SQL injection: Solutions

- Filter all input fields for apostrophes to prevent unauthorized logins
- Filter all input fields for SQL commands like insert, select, delete, and exec to prevent server manipulation
- Limit input field length (which will limit hackers' options), and validate the input length with server-side scripts.
- Place the database on a different computer than the web server.
 - If the database is hacked, it'll be harder to reach the web server.
- Limit the user privileges of the server-side scripts.
- Delete all unneeded extended stored procedures to limit hackers' possibilities.

Common Gateway Interface

Common Gateway Interface (CGI)

- meta-language for translating URLs or HTML forms into executable programs.
- An attacker may exploit bugs in CGI scripts to gain unauthorized access to files on the web server, or even to take control of the host.
- CGI scripts can present security holes in two ways:
 - they may intentionally or unintentionally leak information about the host system that will help hackers break in.
 - Scripts that process user input may be vulnerable to attacks in which the remote user tricks them into executing commands (always remember: "user input is evil").

7. Communication Security

Vulnerabilities

- <u>Tapping or eavesdropping</u>: occurs when a device is placed near or into the cabling.
- <u>Sniffing</u>: using Sniffers (special programs) in order to eavesdrop on the network traffic.

- IP spoofing:

An attacker can place any IP address as the source address of an IP datagram, so <u>can be dangerous to base access control</u> <u>decisions on raw IP addresses alone.</u>

7. Communication Security

An attacker may be able to replay, delay, reorder, modify or inject IP datagrams.

DNS spoofing: DNS server is lured to translate names (eg, <u>www.scs-net.org</u>) into attackers' IP addresses.

Solution:

- Communication Protection: SSL, IPsec, ...

- Secure Sockets Layer (SSL) was developed (in 1994) by Netscape Corporation to provide security between web client and server.
- SSL designed to be under HTTP:
 - HTTP | SSL | TCP
- SSL permits:
 - Authentication of peer entities
 - Exchange of secret keys
 - Use of exchanged keys to authenticate and encrypt transmitted data between communicating peer entities.

SSL Architecture

SSL consists of two sublayers:

- SSL Record Protocol: provide security services to higher-layer protocols (in particular, HTTP) including SSL management protocols.
- SSL Management protocols: Handshake, Cipher Change, and Alert Protocols

SSL Handshake Protocol	SSL Change Cipher Spec Protocol	SSL Alert Protocol	нттр
SSL Record Protocol			
ТСР			
IP			

SSL AFCHITECTL

SSL Record Protocol

- The SSL Record Protocol uses the keys derived from the Handshake Protocol's master key to securely deliver data.
- Provides two security functions:
 - Confidentiality and Message Integrity

SSL Record Protocol

- Protected data : SSL Record protocol allows application protocols above SSL to be secured.
- Fragmentation: messages are broken into blocks
- Compression: optional
 - Compression algorithm is not specified
- MAC: computed over compressed data.
 - SSL MAC is similar to HMAC
 - MAC key is derived from the master key.
- Encryption may be stream or block mode.
 - Symmetric encryption is used
 - There are only a limited selection of ciphers and MAC algorithms that are allowed (eg, DES, 3DES, IDEA, RC4, etc)

SSL Handshake Protocol

Used to allow the server and client to

- authenticate each other using certificates,
- negotiate encryption and MAC algorithms, and
- establish keys to be used to protect data sent in SSL Record.

Used before any application data is transmitted.

- Java Secure Socket Extension (JSSE) provides a framework and an implementation for a Java version of the SSL
- Includes functionality for:
 - data encryption,
 - server authentication,
 - message integrity,
 - and optional client authentication.
- JSSE, developers can provide for the secure passages of HTTP, FTP, Telnet, etc.

JSSE

- JSSE is included in java.net.ssl as a sub-package of java.net.
- JSSE main classes:
 - Java.net.ssl.SSLSocket
 - Java.net.ssl.SSLSocketFactory
 - Java.net.ssl.SSLServerSocket
 - Java.net.ssl.SSLServerSocketFactory
 - SocketFactory and ServerSocketFactory are factory classes for generating classes of the corresponding socket classes.

8. ID and FW

- Viruses and intrusion are the most publicized threats to system security
- Intrusion: illegally gaining access to systems
- Intrusion techniques: acquiring protected information (often user passwords)
 - Passwords are associated with users in files
 - Password files must be protected
- Countermeasures: prevention and detection
 - If intrusion prevention fails,
 - Intrusion detection is the real defense line.

ID and FW

- Intrusion detection is based on the assumption that the behavior of the intruder differs from that of a legitimate user in ways that can be quantified.
- Intrusion detection approaches:
 - Statistical anomaly detection
 - Rule-based detection
- Audit Records: is a fundamental tool for intrusion detection
 - A detection record may contain subject (user, process), action (login, read, write), object (files, programs), resource usage, timestamp
- Examples of IDS:
 - Cisco's Secure IDS
 - ISS RealSecure
 - Snort

Firewall

- A firewall is any device used as a network-level access control mechanism for a particular network or a set of networks
 - Firewall is used to prevent outsiders from accessing an internal network.
- Firewalls may be stand-alone computers, routers, or firewall appliances (sometimes with their own OS)
- They serve as control points to and from networks
- They check whether or not network traffic should be allowed according to sets of rules or policies.

Pitfalls: slowing data transmission, impairing networking

Types of firewalls

- Packet filtering routers
- Stateful-inspection firewalls
- Application-level gateway (also called proxy server)
- Examples:
 - CheckPoint's Firewall-1: Stateful-inspection-based
 - Cisco's PIX:stateful packet filter-based
 - Border's FireWall Server: Proxy-based
 - Tiny Software's Tiny Personal Firewall: Packet filter-based

